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Equivalence of Deviau’s, Hestenes’, and Parra’s
Formulations of Dirac Theory1
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Received August 12, 2000

Daviau showed the equivalence of matrix Dirac theory, formulated within a spinor
bundle 6x . C4

x, to a Clifford algebraic formulation within space Clifford algebra
Cl(R3, d) . M2(C) . 3 . Pauli algebra (matrices) . H % H . biquaternions.
We will show, that Daviau’s map u: C4 ° M2(C) is an isomorphism. It is shown
that Hestenes’ and Parra’s formulations are equivalent to Daviau’s Clifford algebra
formulation, which uses outer automorphisms. The connection between different
formulations is quite remarkable, since it connects the left and right action on
the Pauli algebra itself viewed as a bi-module with the left (resp. right) action
of the enveloping algebra 3e . 3 ^ 3T on 3. The isomorphism established in
this article and given by Daviau’s map does clearly show that right and left
actions are of similar type. This should be compared with attempts of Hestenes,
Daviau, and others to interprete the right action as the iso-spin freedom.

1. INTRODUCTION

A few months after the publication of Dirac’s first paper (Dirac, 1928)
Charles Galton Darwin tried to re-express the strange new objects called half
vectors by Pauli (Pauli, 1933) and spinors due to Paul Ehrenfest—according
to B.L. van der Waerden (see Budinich et al., 1988)—with help of tensors
(Darwin, 1928). He did not fully succeed in obtaining an equivalence by
writing down complex tensor equations which yield Dirac’s theory “twice
over”—with a doubling of degrees of freedom from complexification—see
Parra (1996) for a detailed review on this topic. Madelung, trying the same
transcription, essentially reproduced Darwin’s results, most likely without
knowing them (Madelung, 1929). Also Fock and Ivanenko (Fock, 1929; Fock

1 Work supported by the Deutsche Forschungsgemeinschaft DFG providing a travel grant to
Zacatecas and Ixtapa Conferences in Mexico, June/July 1999.

2 Universität Konstanz, Fakultät für Physik, Fach M 678, 78457 Konstanz, Germany; e-mail:
Bertfried.Fauser@uni-konstanz.de

399
0020-7748/01/0100-0399$19.50/0 q 2001 Plenum Publishing Corporation



400 Fauser

et al., 1929) did very important work on the geometric relations behind the
g-algebra introduced by Dirac. De Broglie and his school developed a very
valuable and complete picture of the Dirac fluid—a tensor description of the
Dirac field—and its hydrodynamics (Yvon, 1940; Takabayasi, 1957). This
reasoning has a revival in recent times because of the improved tool of
Clifford algebra now available (Rylov, 1995).

The historical development abandoned the attempt to find a geometric—
and thereby tensorial—description of the Dirac field. There seemed to be a
tendency to concrete calculations which on the one hand were extremely
successful and on the other hand could be performed without an elaborated
interpretation by applying simply the rules of g-algebra, see discussion in
(Isham, 1995). A quantum theory had (has?) to be interpreted within a
statistical picture. It was simply out of the imagination of that time to search
for such an explanation or even to connect geometry with spinor variables.

Neither the physicists Pauli and Dirac nor the mathematicians Weyl,
Jordan, von Neumann, and others cited substantially seemed to have known
the work of Grassmann, Clifford, Klein, Cayley, Hamilton, and other algebra-
ists of the 19th century. If some of their formulas and results were acknowl-
edged—the quaternions, e.g., were well known to be isomorphic to Pauli
matrices—this was done in a technical sense. The geometric origin of hyper-
complex number systems was unknown or ignored and thus lost for further
development of the theory. One result of this missed opportunity—in the
sense of Dyson (1972)—was the thereby obtained “interpretation” of spinors,
which became artificial objects in an abstract spin space or an inner spin
space and had, thusly, no physical counterpart in the “real world.”

The situation changes with the appearance of the writings of David
Hestenes (Hestenes, 1966), see references in (Hestenes, 1997). He recovered
again the geometric origin of spinor objects and the formerly well known
connection of (metric) space and certain algebras. Hestenes gave a geometrical
motivated treatment of real Dirac theory in his book Space Time Algebra
(Hestenes, 1966). The reformulation of Dirac’s theory in real (!) space time
algebra Cl(R4, h), h 5 diag(1, 21, 21, 21) is the starting point of a host
of new insights into the interplay between geometry, algebra, and physics.
Hestenes’ reformulation was also the starting point of Daviau’s consideration
which lead to a algebraic (. Cl(R3, d)), d 5 diag(1, 1, 1) formulation of
Dirac theory.

A discussion on the proper interpretation of spinorial objects in either
geometrical or statistical settings, lead to a large number of slightly different
notations of spinors; e.g., spinor modules Sx . C2n

x , operator or Hestenes
spinors . Cl1p,q, ideal spinors . Clf, f an primitive idempotent element,
algebraic spinors and the spin Clifford bundle–isomorphism classes of ideal
spinors to geometrically equivalent idempotents’ –etc. If Clifford algebra
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provides us the universal language for mathematics and physics (Hestenes,
1986), we have to give exact and unambiguous notations of physical objects
and of their exact mathematical design.

Hestenes in succeeding to write down a real Dirac theory within Cl1,3

translated the non-geometrical i 5 u 21 into the right action of g2g1, recall
(g2g1)2 5 2g2

1g2
2 5 21. But right actions mix different left ideals related to

different idempotents, while left action remains in the same left ideal.
Rodrigues et al. introduced, therefore, the spin Clifford bundle and algebraic
spinors, in which spinors or even better algebraic spinors are defined as
equivalence classes of ideals which belong to geometrically equivalent idem-
potents (Rodrigues et al., 1996, cf. also De Leo et al., 1999). Such idempotents
are conjugated to one another within the Clifford–Lipschitz group G by e8
5 ueu,, u P G,, the reversion map, and are, therefore, members of the same
group orbit. To obtain a mathematical clear picture one should then translate
the Dirac–Hestenes spinors into the quotient space DH . Cl1,3/G (as linear
space) to be not troubled with the probably ill chosen representants. This
consideration should, however, be compared with the approach of Parra to
Dirac–Hestenes spinors and his illuminating explanation of the equivalence
classes and their relations to the Wigner definition of a particle as an irreduc-
ible representation of the Poincaré group (Parra, 1996).

In this paper, we study the map from Dirac matrix theory onto Clifford
algebra used by Daviau. It is shown that a special option of Parra’s formulation
corresponds to Hestenes’. The equivalence of Hestenes’, sic. Parra’s, formula-
tion to the Clifford algebraic formulation of Daviau is demonstrated. The
correct identification to Parra’s options is given.

Our aim is not to deal with the issue of representations. Our equivalence
proof connects different abstract Clifford algebras, pointing out joices in the
set-up of abstract algebra necessary due to identify sub-algebras, etc., cor-
rectly. A morphology of spinor types can be found in Figueiredo et al. (1990).

We cannot appreciate every work concerned with Clifford algebraic
formulations of Dirac theory for lack of space, one important paper may be
added here (Baylis, 1997).

Our analysis unmasks a close connection between the ordinary spinor
module Sx . C4

x which is equivalent to a formulation by ideal spinors in
Cl4,1, since Cl4,1 > M4(C) which is actually used by physicists. Daviau’s
map furthermore shows up a correspondence of left actions on C4

x spinors
to homomorphisms of 3, which can be written as uxv, u, v, x, P 3. If one
defines the enveloping algebra 3e as in Hahn (Hahn, 1994), 3e > 3 ^ 3T,
where 3T denotes the right module or transposed module, it is easily seen,
that the 3e left action is equivalent to the 3-bi-module structure by writing
3e • 3 ° 3, x ^ yT • z 5 xzy. We have therefore to consider left and right
actions on 3, as Daviau did. This makes 3 a 3-bi-module. This bi-module
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structure is crucial for further investigations of the enveloping algebra 3e

of Clifford algebras, which will be given elsewhere, and for a thoughtful
interpretation of left and right actions in Clifford algebras. There is a wide-
spread thinking about the meaning of right actions, (see Hestenes, 1967;
Daviau, 1998b; Fauser et al, 2000c).

2. THE DAVIAU MAP u: C4 ° Cl3,0

2.1 Definition of the Daviau Map

Daviau changed his notation and got rid of his cyclic permuted s-
matrices in a new work (Daviau, 1998a), however, we stay with his old
notations. We start with the Dirac equation in its matrix representation due
to Bjorken and Drell (Bjorken et.al., 1964)

2igmm C 1 qAmgm C 1 m C 5 0. (1)

We have m, q real constants, i 5 !21 the usual complex unit, m :5 /xm

the partial derivatives with respect to a local holonom coordinate system,
Am real components of an external vector potential, C is the Dirac spinor of
C4 valued functions of the (tangent) Minkowski space and finally gm the
Dirac matrices in Dirac representation

g0 5 g0 :5 11 0
0 212 gk 5 2gk :5 1 0 2sk

sk 0 2 1 :5 1232

s1 :5 10 1
1 02; s2 :5 10 2i

i 0 2; s3 :5 11 0
0 212. (2)

It is an easy task to translate the Dirac equation into a set of eight real coupled
differential equations (Parra, 1992),

C 5 1
C1

C2

C3

C4
2 :5 1

a 1 ie
2g 2 if
d 1 ih
b 1 ic

2
with a, . . . , h: (M, h) ° R real valued functions. Here one does no longer
insist on the “spinorial” character of the object in favor of playing with
components and forgetting about transformation properties (Parra, 1996;
Parra, 1992).

One has to consider the Pauli algebra or Clifford algebra Cl3,0 . 3.
This algebra is isomorphic to the full matrix algebra M2(C) and thus eight
dimensional over the reals, dimR C 5 8 5 dim 3 5 dimR M2(C).
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The aim of the Daviau map is to give an isomorphism from
C4

x → coordinates → M2(C) which is also a morphism of the algebraic struc-
ture. One could call such a map a Dirac-morphism.

By letting

u :5 a 1 ih, v :5 f 1 ib, w :5 c 1 ig, t :5 d 1 ie

f1 :5 u 1 w, f2 :5 t 1 v, f3 :5 t 2 v, f4 :5 u 2 w

fD 5 1f1 f3

f2 f42 P M2(C) . 3 . Cl3,0, (4)

we obtain a map u: C4 ° M2(C). Introducing then (note our indexing)

¹ :5 0 1
›

 ,
›

 :5 s21 1 s32 1 s13

A :5 A0 1
›

A ,
›

A :5 A1s2 1 A2s3 1 A3s1

f* :5 1 f4 2f2

2f3 f1 2 5 s2fs2

i :5 s1s2s3, [i, X ] 5 0 ∀X e 3, (5)

we obtain the space Clifford or Pauli algebraic form of Dirac’s equation due
to Daviau:

¹fis1 5 mf* 1 qAf. (6)

Daviau showed, that all transformation properties and requirements are ful-
filled within this picture, making his map finally a Dirac-morphism preserving
the algebraic structure of Dirac theory. A Lagrangian formulation is also
possible. Using the above given representation of Pauli matrices (2) one can
reconstruct an algebraic expression of the M2(C) matrix fD. From (4) we
find a form of the Daviau spinor,

fD 5 1u 1 w t 2 v
t 1 v u 2 w2

5 1a 1 c 1 i(h 1 g) d 2 f 1 i(e 2 b)
d 1 f 1 i(e 1 b) a 2 c 1 i(h 2 g)2

5 a1 1 ds1 1 bs2 1 cs3 1 eis1 2 fis2 1 gis3 1 hi. (7)

2.2 Hestenes Equation

We may further notice, that since dim Cl1,3 5 16 and dimCl 1
1,3 5 8,

Cl 1
1,3 may also be used as a target for a map H: C4 ° Cl 1

1,3. This algebra
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Cl +, called even subalgebra, consist of Dirac–Hestenes operator spinors and
has in a natural manner a bimodule structure under the action of even elements.
With the above choice of names for the real spinor components (3) we obtain
the correspondence using gij :5 gigi , (i :5 gig0, i :5 (1(2(3 5 g0123:

CH 5 a 1 bg10 1 cg20 1 dg30 1 eg21 1 fg23 1 gg13 1 hg0123.

5 a 1 bo1 1 co2 1 do3 2 fio1 1 gio2 1 eio3 1 hi (8)

Where we have used the identities

io1 5 ig10 5 2g23, io2 5 ig20 5 g13, io3 5 ig30 5 g21 (9)

and anticipated the names of the variables in an appropriate manner to fit
into the Daviau scheme. The translated Dirac equation reads (m 5 m0c/", q
5 e/"c,  5 gmm, A 5 gmAm)

CHg21 5 mCHg0 1 qACH , (10)

which is the famous Dirac–Hestenes equation and representation free. The
elements on the right hand side of CH describe the spin bivector S :5 g21

and the “particles” (local) velocity v :5 g0—a time-like vector measuring
proper-time—and do not fix a representation. For a discussion of the relation
between quantum logic, measurement, and the choice of a time-like direction
in Dirac theory see Haft (1996) and Saller (1996).

We may left multiply (10) by 2g0 which turns the equation (beside the
mass term) into the space part of the algebra. Using (9) and

2g0 5 2g0gmm 5 Sm m

2g0A 5 2g0gmAm 5 Sm Am (11)

we remain with

ommCHio3 5 2mg0CHg0 1 qomAmCH

ommCHio3 5 2mC†
H 1 qomAmCH , (12)

which is written now within the space sector only. The transformation
C†

H 5 g0CHg0 represents the hermitian adjoint, which is not an inner automor-
phism of the Pauli algebra isomorphic to Cl 1

1,3, as indicated by the odd
element g0.

This form of the Dirac–Hestenes’ formulation will be needed in the
proof of the isomorphy to Daviau’s formulation below.
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2.3. Parra’s Analysis of Dirac Theory

Parra analyzed the Dirac equation also in terms of a real set of eight
differential equations (Parra, 1992). Like Darwin and Madelung he afterwards
tried to reinterpret this set of equations in terms of vector analysis, spinors
versus multi-vectors (Parra, 1996). The novelty of Parra’s approach is, that
he succeeded in formulating tensorial equations without any complexification
and thereby no doubling of degrees of freedom. This is achieved by a simple
inspection of the resulting eight real equations. Under the assumption, that
the real part R(C1) of C1—first component of the C4

x Dirac spinor—
transforms as a scalar quantity, the full set of eight equations admits a
vectorial character. The result is at first not satisfactory since some terms
remain to be only third components of vectors. By introducing the spin vector
›

n 5 (0, 0, ") (5 2iS), one obtains a full SO(3) rotationally invariant set of
vector equations. Denoting the two scalar quantities as a, l and the two
vectorial quantities as

›
E 5 (E1, E2, E3),

›
B 5 (B1, B2, B3) one arrives at the

Parra type {0} spinor

C{0} 5 1
a 1 iB3

2B2 1 iB1

E3 1 il
E1 1 iE2

2 (13)

It is purely a matter of choice which type of vector component—scalar, first,
second, or third vector component—one asserts for R(C1). The other three
possibilities yield by the same procedure, also introducing the spin-vector
›

n equally well suited spinor–tensor translations. A suitable choice of names
for the involved scalars and vectors yields:

C{0} 5 1
a 1 iB3

2B2 1 iB1

E3 1 il
E1 1 iE2

2 C{2} 5 1
B2 1 iB1

a 2 iB3

E1 2 iE2

2E3 1 il
2

C{1} 5 1
E1 2 iE2

2E3 1 il
B2 1 iB1

a 2 iB2
2 C{3} 5 1

E3 1 il
E1 1 iE2

a 1 iB3

2B2 1 iB1
2 (14)

If we now introduce a basis {ei} with Clifford algebraic relations
ei ej 1 ejej 5 2hij and the above notations for m and q, one obtains four
different equations:
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{2} ¹C{2} e21 1 qAC{2} 1 mC{2} e0 5 0 e1
↑

{0} 2¹C{0} e21 1 qAC{0} 1 mC{0} e0 5 0 e1
↓

{3} ¹C{3} e21 2 qAC{3} 1 mC{3} e0 5 0 e2
↑

{1} 2¹C{1} e21 2 qAC{1} 1 mC{1} e0 5 0 e2
↓ . (15)

In the second column, we give the identification—due to Parra—with “parti-
cles” associated with the corresponding equations. 6 indicates electron or
positron where @ indicates spin up or down—this is a choice—one might
exchange the meanings. The second of these equations—Parra option {2}—
happens to be the Dirac–Hestenes equation (10) if we identify the {ei}
and {gm} bases, which thereby includes the spin explicitly. The other three
equations are new. Even if they are similar in structure one is not able to
remove the relative changes in sign if two or more of these equations are
considered at the same time. Once more, we see the right action of the spin-
bivector e21 and of the velocity vector e0. One should note, that proceeding
from Dirac theory to quantum electrodynamics (QED), it became necessary
to introduce particle and antiparticle creation and annihilation operators for
each spin polarization. While in QED the formalism takes care of the different
types of spinors, a simple complex linear combination—as quite common
in Dirac matrix theory—intermingles the different Parra options without any
chance to re-obtain them as different equations.

The Parra spinors can easily be put within a quaternion basis. Let 1, ik

:5 iek be a quaternion basis, then the spinors of r-option become Cr 5
q1

r 1 iq2
r where 2means quaternion conjugation. Since Hestenes spinors are

elements of Cl1
1,3 , Cl1,3 . M2(H), this can be extended to matrix spinors

C{r} 5 1 q1
r 2q22

r

q22
r q1

r 2 (16)

The 2 3 2 matrix structure is a matrix representation of the complex structure
(1, i).

Since the Hestenes equation is formulated within abstract algebra and
not within a representation it is trivially representation independent. But a
change of bases has to be not only an algebra isomorphism but moreover a
Clifford algebra isomorphism. Only elements of the Clifford–Lipschitz group
G1,3 induce such transformations. Denoting the group of even such elements
as G1

1,3, we expect the quotient D 5 G1,3 /G1
1,3 to be exactly the discrete group

of transformations which connect the Parra options. Such transformations
are beside the identity space inversion, charge conjugation, and time reversal.

We would, thus, submit that the spin Clifford bundle defined by
Rodrigues et al. (Rodrigues et al., 1996) is a slightly too large structure,
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since it does not properly distinguish the different particle types of Parra.
The “spin-particle” Clifford bundle should consist of equivalence classes of
idempotents with respect to an even geometrical equivalence relation. The
commutator relation and thus the Clifford structure can be seen to be invariant
under discrete—or more generally odd—transformation of the Clifford–
Lipschitz group (Crumeyrolle, 1990).

We have established the equivalence of Parra’s equations—and the spin
Clifford bundle—to the Hestenes formulation. We concentrate now on the
connection of Hestenes’ and Daviau’s Clifford algebraic formulations. The
Daviau Clifford algebra form of Dirac’s equation will correspond directly to
Parra option {1} in (14) as will be shown below.

2.4. Equivalence of Space Clifford and Hestenes Formulation

We will calculate the action of the outer automorphism within the even
algebra. We compare the g0 action with the action of ∗ introduced in (5) on
the Daviau spinor (4),

f*D 5 s2fDs2

5 1a 2 c 1 i(g 2 h) 2d 2 f 1 i(e 1 b)
f 2 d 1 i(b 2 e) a 1 c 1 i(2h 2 g)2

5 a1 2 ds1 2 bs2 2 cs3 1 eis1 2 fis2 1 gis3 2 hi. (17)

Let use the injection si ° si ^ 1, which gives a 4 3 4 representation of
the space Clifford algebra, we are able to introduce a g0 in this representation,
thereby identifying ( and s elements. However, this is no longer an element
of the Clifford algebra. By comparing with (4) we have

g0f*Dg0 5 a1 1 ds1 1 bs2 1 cs3 1 eis1 2 fis2 1 gis3 1 hi

5 fD, (18)

This might be rewritten as

f*D 5 g0fDg0 (19)

and used in the rewriting of the Dirac–Hestenes equation (12) which then
yields the Pauli or space Clifford algebraic equation

ommCHio3 5 2mC*H 1 qomAmCH. (20)

To obtain the full equivalence between this formulation of the Dirac–Hestenes
theory to the space Clifford algebraic version of Daviau, we have to perform
two further steps.
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The first is to explain the additional minus sign in front of the mass
term. Redefining the sign of charge and angular momentum measurement,
i.e., e ° 2e, " ° 2", results in the appropriate change. Of course, from a
particle point of view this two particles are not identical. They have a relation
as a spin up electron to a spin down positron and do correspond to different
types of Parra options in rewriting Hestenes’ theory (Parra, 1992). Since no
weak interactions are involved here, one physically cannot distinguish these
options and there is no harm in these settings. However, one should note
that Daviau got four different equations within his calculations and there
may be the chance that one of them fit exactly to Hestenes theory without
changing the sign of the mass term.

The second step is a relabeling of base elements in a cyclic way. This
can be done by defining

z : s ° o
z(1) 5 1

z(si) 5 oi21 cyclic. (21)

The map z can be extended as an outer-morphism, that is a grade preserving
extension (Hestenes et al., 1984), to the whole algebra by setting z(sisj) 5
z (si)z(sj), etc. Since z is a cyclic permutation, we have z3 5 1 and z21 5
z2. It is crucial to note, that even if in the definition of the * morphism in
(5) via complex conjugation followed by a transformation with s2, * is not
inner, it commutes with z. That is we have z(f*) 5 z(f)*. The map z is
inessential to our argument and added for completenes. Daviau has changed
notation in recent work to circumvent this renaming.

We obtain the following isomorphism noticing from (7) and (8) that
z21(CH) 5 fD holds:

ommCH io3 5 2mC*H 1 qom AmCH (22)

acting by m ° 2m and z21 results in

(s00 1 s21 1 s32 1 s1 3) fDis1 5

mf*D 1 q(s0 A0 1 s2A1 1 s3A2 1 s1A3)fD (23)

which results with (5) in

¹fDis1 5 mf*D 1 qAfD. (24)

This proves the equivalence of Daviau’s Clifford algebraic and Hestenes’
formulation of Dirac’s theory.
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3. RELATED WORK

There is a notorious revival of the transition between spinor and tensor
descriptions of Dirac theory. We mentioned Darwin and Madelung, there are
also recent approaches of which we will mention only two more. Based on
ideas of Sallhofer (1991), Simulik et al. (1998) used a spinor–tensor transition,
called there Maxwell–Dirac isomorphism. Their formalism is a restriction
of the approach developed by Parra, however, not so detailed and pedagogical.
A description of geometric electron theory with many citations and critical
remarks can be found in Keller (1993).

A further genuine and important approach to the spinor–tensor transition
was developed starting probably with Crawford by Lounesto (1997). Lounesto
investigated the question of how a spinor field can be reconstructed from
known tensor densities. The major characterization is derived, using Fierz–
Kofink identities, from elements called Boomerangs, because they are able
to come back to the spinorial picture. Lounesto’s result is a characterization
of spinors based on multi-vector relations which unveils a new unknown
type of spinor.

The notion of a multi-vector is questionable in Dirac theory (Fauser,
1998) and in general (Fauser, 1999d). The Zn-grading used to define multi-
vectors is not a feature of Clifford algebra. One expects very different spinor
structures if different Zn-gradings are properly implemented (Fauser et al.,
1999b; Fauser, 1997).

4. CONCLUSION

We discussed the isomorphism between spinor and multi-vector formula-
tion of Dirac theory. We proved the equivalence of Daviau’s Clifford algebraic
and Hestenes’ operator spinor formulations of Dirac theory as their equiva-
lence to different options of Parra’s treatment. In usual formulations the
spinor representations are made up from left actions, while Daviau’s formula-
tion requires the bi-module structure of left and right actions. A detailed
analysis of this fact will be given elsewhere (Fauser, 2000a). Regarding iso-
spin, which was sometimes introduced as right action, our analysis shows
that one should be very careful in doing so.

The Daviau spinor is of the most general form—most general element
in the algebra—and utilizes the full Pauli algebra as representation space.
This should be compared with the Hestenes even operator spinors and ideal
or column spinors which span the representation space but not the algebra
itself. It is peculiar at this point carefully to distinguish representations and
abstract algebra. In this sense, Daviau’s formulation is the most compact
formulation.
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We gave some references which critically discussed the concept of multi-
vectors or Zn-gradings in Clifford algebras. One knows that different Zn-
gradings can produce quite different spinor modules. This fact renders the
unquestioned multi-vector structure as a peculiar one. A careful study of
the representation theory and their dependence on gradings in such cases
is required.
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